1 NIFC Fire History Data (1980-2003)

“NIFC Fire History Data 1980-2003” – ftp://ftp.nifc.gov/pub/FireHistoryData/

1.1 Overview

This is the not-too-well documented “NIFC” database availble via ftp from the URL above.

Read the data, and list the first few lines. The data are read directly from the file firehistory_1980_2003.dbf (2004-09-21, accessed 2014-07-06).

library(foreign)
filename <- "e:/Projects/fire/DailyFireStarts/data/NIFC/firehistory_1980_2003.dbf"
nifc <- read.dbf(filename)

Summarize

head(nifc)
##   AGENCY_COD UNIT_ID FIRE_TYPE FIRE_NUMBE FIRE_NAME STATE DATE_DISCO DATE_CONTR GENERAL_CA SPECIFIC_C
## 1        FWS   74500        11       7177      <NA>    AK   20010527   20010531          4         30
## 2        FWS   74500        12       7057    704001    AK   19870423   19870423          5         30
## 3        FWS   74540        21       7046    704017    AK   19870830   19870830          2         30
## 4        FWS   74540        12       7192      <NA>    AK   20010621   20010000          4         30
## 5        FWS   74540        51       7169    804015    AK   19880630   19880000          0         30
## 6        FWS   74540        12       7295    832095    AK   19880724   19880728          0         30
##   YEAR_DISCO LATITUDE LONGITUDE ACRES_CONT SIZE_CLASS GEOGRAPHIC
## 1          0 51.80000 -178.8167        800          E     Alaska
## 2          0 51.93333 -176.6667         80          C     Alaska
## 3          0 61.56667 -166.1667          2          B     Alaska
## 4          0 61.83333 -165.5333          1          B     Alaska
## 5          0 61.83333 -164.1667         NA       <NA>     Alaska
## 6          0 62.45000 -163.7833         20          C     Alaska
summary(nifc)
##  AGENCY_COD       UNIT_ID         FIRE_TYPE        FIRE_NUMBE       FIRE_NAME          STATE       
##  BIA : 91615   304    :  8421   11     :131428   1      :  1932   FA 1   :   594   CA     : 65941  
##  BLM : 91039   H50H58 :  6958   13     : 15356   2      :  1744   FA 2   :   549   AZ     : 56218  
##  FWS : 21217   H50H52 :  6385   16     : 15267   3      :  1603   FA 3   :   508   OR     : 40158  
##  NPS : 27764   AKAFS  :  6042   41     : 13012   4      :  1494   FA 4   :   462   ID     : 29556  
##  USFS:198539   312    :  5388   51     : 10917   5      :  1409   FA 5   :   442   MT     : 29031  
##                F50F52 :  5282   (Other): 45655   (Other):223453   (Other):305934   NM     : 22716  
##                (Other):391698   NA's   :198539   NA's   :198539   NA's   :121685   (Other):186554  
##     DATE_DISCO        DATE_CONTR       GENERAL_CA       SPECIFIC_C       YEAR_DISCO      LATITUDE    
##  19890726:  1079   19940000:  1626   1      :186613   30     :165887   Min.   :   0   Min.   :19.27  
##  19860810:   866   19920000:  1487   9      : 45411   1      : 76624   1st Qu.:1988   1st Qu.:35.23  
##  19870830:   855   19960000:  1466   5      : 43835   0      : 74888   Median :1994   Median :39.87  
##  19890808:   700   19930000:  1412   0      : 37214   19     : 15116   Mean   :1895   Mean   :40.18  
##  19940723:   666   19950000:  1349   4      : 35550   27     : 11536   3rd Qu.:1999   3rd Qu.:44.45  
##  (Other) :425917   (Other) :422057   2      : 32564   8      : 11349   Max.   :2003   Max.   :69.85  
##  NA's    :    91   NA's    :   777   (Other): 48987   (Other): 74774   NA's   :91                    
##    LONGITUDE         ACRES_CONT         SIZE_CLASS                   GEOGRAPHIC    
##  Min.   :-178.82   Min.   :     0.0   A      :222664   Southwest          : 79916  
##  1st Qu.:-118.38   1st Qu.:     0.1   B      :136174   Northwest          : 54394  
##  Median :-111.80   Median :     0.2   C      : 42737   Northern Rockies   : 49492  
##  Mean   :-110.05   Mean   :   187.0   D      : 12175   Rocky Mountain     : 43729  
##  3rd Qu.:-105.72   3rd Qu.:     2.5   E      :  8603   Southern           : 43412  
##  Max.   : -67.06   Max.   :606945.0   (Other):  7658   Eastern Great Basin: 42197  
##                    NA's   :163        NA's   :   163   (Other)            :117034
length(nifc[,1])
## [1] 430174
str(nifc, strict.width="cut")
## 'data.frame':    430174 obs. of  16 variables:
##  $ AGENCY_COD: Factor w/ 5 levels "BIA","BLM","FWS",..: 3 3 3 3 3 3 3 3 3 3 ...
##  $ UNIT_ID   : Factor w/ 881 levels "1002","1003",..: 446 446 450 450 450 450 450 450 450 450 ...
##  $ FIRE_TYPE : Factor w/ 27 levels "0","1","11","12",..: 3 4 10 4 22 4 4 4 10 4 ...
##  $ FIRE_NUMBE: Factor w/ 31568 levels "0","1","10","100",..: 6671 6538 6526 6688 6662 6802 7056 6525 65..
##  $ FIRE_NAME : Factor w/ 151091 levels "''67''","''67'' 2",..: NA 7020 7032 NA 7546 7728 13185 73706 70..
##  $ STATE     : Factor w/ 51 levels "AK","AL","AR",..: 1 1 1 1 1 1 1 1 1 1 ...
##  $ DATE_DISCO: Factor w/ 8553 levels "19140716","19150424",..: 7604 2463 2592 7629 2895 2919 5417 2591 ..
##  $ DATE_CONTR: Factor w/ 8577 levels "02031231","19800000",..: 7595 2445 2574 7444 2698 2907 5402 2574 ..
##  $ GENERAL_CA: Factor w/ 10 levels "0","1","2","3",..: 5 6 3 5 1 1 3 3 2 2 ...
##  $ SPECIFIC_C: Factor w/ 33 levels "0","1","10","11",..: 25 25 25 25 25 25 25 25 25 25 ...
##  $ YEAR_DISCO: int  0 0 0 0 0 0 0 0 0 0 ...
##  $ LATITUDE  : num  51.8 51.9 61.6 61.8 61.8 ...
##  $ LONGITUDE : num  -179 -177 -166 -166 -164 ...
##  $ ACRES_CONT: num  800 80 2 1 NA 20 30 10 5 0.5 ...
##  $ SIZE_CLASS: Factor w/ 7 levels "A","B","C","D",..: 5 3 2 2 NA 3 3 3 2 2 ...
##  $ GEOGRAPHIC: Factor w/ 11 levels "Alaska","Eastern",..: 1 1 1 1 1 1 1 1 1 1 ...
##  - attr(*, "data_types")= chr  "C" "C" "C" "C" ...

Remove pre-1980 data (identified in a preliminary analysis).

length(nifc[,1])
## [1] 430174
nifc <- nifc[nifc$YEAR > 1980,]
length(nifc[,1])
## [1] 405124

Transform date information

library(lubridate)
nifc$STARTDATED <- (paste(substr(as.character(nifc$DATE_DISCO), 1,4),
  substr(as.character(nifc$DATE_DISCO), 5,6), substr(as.character(nifc$DATE_DISCO), 7,8), sep="-"))
nifc$STARTDATED <- as.Date(nifc$STARTDATED)
nifc$YEAR <- as.numeric(format(nifc$STARTDATED, format="%Y"))
nifc$startday <- as.numeric(format(nifc$STARTDATED, format="%d"))
nifc$startmon <- as.numeric(format(nifc$STARTDATED, format="%m"))
nifc$startdaynum <- yday((strptime(nifc$STARTDATED, "%Y-%m-%d")))

Convert acres to hectares

nifc$AREA <- nifc$ACRES_CONT * 0.404686

Map the data

library(maps)
plot(nifc$LATITUDE ~ nifc$LONGITUDE, ylim=c(17,80), xlim=c(-180,-55), type="n",
  xlab="Longitude", ylab="Latitude")
map("world", add=TRUE, lwd=2, col="gray")
points(nifc$LATITUDE ~ nifc$LONGITUDE, pch=16, cex=0.2, col="red")

Number of fires by different causes.

# reorder SPECIFIC_C levels
table(nifc$SPECIFIC_C)
## 
##      0      1     10     11     12     13     14     15     16     17     18     19      2     20     21 
##  72892  76258   7883  11083   2183   5205   4391   3111    443   4044   3680  15034    268    208     72 
##     22     23     24     25     26     27     28     29      3     30     31     32      4      5      6 
##    203    146   1448   2843   4859  11503    123    403   6325 144501     23   2069   2181   1040     76 
##      7      8      9 
##   1461  11138   7936
nifc$specific_cause <- ordered(nifc$SPECIFIC_C, levels=as.character(seq(0:32)))
table(nifc$specific_cause)
## 
##      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15 
##  76258    268   6325   2181   1040     76   1461  11138   7936   7883  11083   2183   5205   4391   3111 
##     16     17     18     19     20     21     22     23     24     25     26     27     28     29     30 
##    443   4044   3680  15034    208     72    203    146   1448   2843   4859  11503    123    403 144501 
##     31     32     33 
##     23   2069      0
# 1 Natural; 2 Campfire; 3 Smoking; 4 Fire use; 5 Incendiary; 6 Equipment
# 7 Railroads; 8 Juveniles; 9 Miscellaneous; 0 Unknown
table(nifc$GENERAL_CA)
## 
##      0      1      2      3      4      5      6      7      8      9 
##  22246 182663  31932  11672  33951  42126  15596   3357  16936  44554
table(nifc$GENERAL_CA, nifc$AGENCY_COD)
##    
##        BIA    BLM    FWS    NPS   USFS
##   0   5257  15531      0   1458      0
##   1  16254  48213      0   9926 108270
##   2   2181   3026      0   2573  24152
##   3   3013   1440      0    842   6377
##   4  18675   3651      0   3308   8317
##   5  15474   2246      0   2466  21940
##   6   3641   4436      0   1332   6187
##   7    585   1165      0    393   1214
##   8  13210    779      0    375   2572
##   9  13190   7820      0   4136  19408
#
# 1 Lightning; 2 Aircraft; 3 Vehicle; 4 Exhaust; 5 Exhaust-other; 6 Logging Line; 7 Brakes; 8 Cooking/Warming;
# 9 Warming Fire; 10 Smoking; 11 Trash Burning; 12 Burning Dump; 13 Field Burning; 14 Land Clearing;
# 15 Slash Burning; 16 Right-of-way Burn; 17 Resource Management Burning; 18 Grudge Fire; 19 Recurrent;
# 20 Smoke Bees/Game; 21 Insect/Snake Control; 22 Employment; 23 Blasting; 24 Burning Building; 25 Power-line;
# 26 Fireworks; 27 Ignition Devices; 28 Repel Predators; 29 House/Stove Spark; 30 Other-Unknown;
# 31 Volcanic; 32 Other-Unknown
table(nifc$specific_cause)
## 
##      1      2      3      4      5      6      7      8      9     10     11     12     13     14     15 
##  76258    268   6325   2181   1040     76   1461  11138   7936   7883  11083   2183   5205   4391   3111 
##     16     17     18     19     20     21     22     23     24     25     26     27     28     29     30 
##    443   4044   3680  15034    208     72    203    146   1448   2843   4859  11503    123    403 144501 
##     31     32     33 
##     23   2069      0
table(as.integer(nifc$specific_cause), nifc$AGENCY_COD)
##     
##         BIA    BLM    FWS    NPS   USFS
##   1   16192      0      0   9842  50224
##   2      39     99      0     35     95
##   3    1947   1724      0    579   2075
##   4     745    981      0    185    270
##   5     102      0      0    168    770
##   6      20      0      0      3     53
##   7     402    588      0    196    275
##   8    2041   2755      0   2478   3864
##   9      90      0      0     21   7825
##   10   3090   1440      0    841   2512
##   11   7985    924      0    530   1644
##   12   1368    552      0    106    157
##   13   3933    663      0    208    401
##   14   3120    546      0    204    521
##   15   1242    498      0    150   1221
##   16    256     58      0     26    103
##   17    234    177      0   3406    227
##   18   1340    120      0    477   1743
##   19  10250   1178      0    716   2890
##   20     46      0      0     37    125
##   21     31      0      0      5     36
##   22     74      9      0     10    110
##   23      9     66      0     12     59
##   24    809    140      0     85    414
##   25    543    686      0    383   1231
##   26   3180    745      0    346    588
##   27  10043    453      0    241    766
##   28     77      0      0      0     46
##   29    173      0      0     21    209
##   30  15861   6639      0   4018 117983
##   31      0      0      0     23      0
##   32    981   1088      0      0      0
# 0 Unknown; 1 Lightning; 2 Human
nifc$CAUSE <- as.numeric(levels(nifc$GENERAL_CA))[nifc$GENERAL_CA]
nifc$CAUSE[nifc$CAUSE >= 2] <- 2
table(nifc$CAUSE)
## 
##      0      1      2 
##  22246 182663 200124
table(nifc$CAUSE, nifc$AGENCY_COD)
##    
##        BIA    BLM    FWS    NPS   USFS
##   0   5257  15531      0   1458      0
##   1  16254  48213      0   9926 108270
##   2  69969  24563      0  15425  90167

Number of fires per year

hist(nifc$YEAR, xlim=c(1980,2015), ylim=c(0,150000),breaks=seq(1979.5,2014.5,by=1))

table(nifc$YEAR)
## 
##  1981  1982  1983  1984  1985  1986  1987  1988  1989  1990  1991  1992  1993  1994  1995  1996  1997 
##  5470  3622  4962  6223  8172 17760 21873 21950 19857 20606 19530 22266 17025 27081 19560 23273 16280 
##  1998  1999  2000  2001  2002  2003 
## 19524 21726 23975 22581 21545 20075
hist(nifc$YEAR[nifc$CAUSE == 1], xlim=c(1980,2015), ylim=c(0,150000),
  breaks=seq(1979.5,2014.5,by=1), main="nifc Natural")

table(nifc$YEAR[nifc$CAUSE == 1])
## 
##  1981  1982  1983  1984  1985  1986  1987  1988  1989  1990  1991  1992  1993  1994  1995  1996  1997 
##  2443  1452  1953  2553  2980  8620 10167 10216  9872 10897  8857 10540  5193 14035  6424 10900  6612 
##  1998  1999  2000  2001  2002  2003 
##  7589  8260 12028 10648  9138 11281
hist(nifc$YEAR[nifc$CAUSE > 1], xlim=c(1980,2015), ylim=c(0,150000),
  breaks=seq(1979.5,2014.5,by=1), main="nifc Human")

table(nifc$YEAR[nifc$CAUSE > 1])
## 
##  1981  1982  1983  1984  1985  1986  1987  1988  1989  1990  1991  1992  1993  1994  1995  1996  1997 
##  2292  1578  2214  2867  4300  8300 10813 10860  9280  8718  9641 10688 10792 11834 11946 11031  8419 
##  1998  1999  2000  2001  2002  2003 
## 10237 12471 11098 10940 11352  8435

Get the total area burned by year

size.year <- na.omit(cbind(nifc$AREA,nifc$YEAR))
total_by_year <- tapply(size.year[,1],size.year[,2],sum)
year <- as.numeric(unlist(dimnames(total_by_year)))
total_by_year <- as.numeric(total_by_year)
plot(total_by_year ~ year, pch=16, type="o", lwd=3, col="red", xlim=c(1980,2013), 
  main="Total Area Burned (ha) (U.S. All)")

Mean area burned by year.

mean_by_year <- tapply(size.year[,1],size.year[,2],mean)
mean_by_year
##      1981      1982      1983      1984      1985      1986      1987      1988      1989      1990 
## 139.23643  44.61810  99.03089  91.45392 106.08337  50.11265  46.12577 147.36037  30.68684  91.18336 
##      1991      1992      1993      1994      1995      1996      1997      1998      1999      2000 
##  48.83555  33.86250  38.08697  51.70260  30.06551  89.75962  64.95209  25.66716  95.09762 113.23597 
##      2001      2002      2003 
##  53.77868 138.51198  90.11396
year <- as.numeric(unlist(dimnames(mean_by_year)))
mean_by_year <- as.numeric(mean_by_year)
plot(mean_by_year ~ year, pch=16, type="o", lwd=3, col="red", xlim=c(1980,2013), 
  main="Mean Area Burned (ha) (U.S. All)")

Histograms of start-day number of the YEAR (startdaynum) for all data, human and lightning:

hist(nifc$startdaynum, breaks=seq(-0.5,366.5,by=1), freq=-TRUE, ylim=c(0,6000), xlim=c(0,400))

hist(nifc$startdaynum[nifc$CAUSE==1], breaks=seq(-0.5,366.5,by=1), freq=-TRUE,
  xlim=c(0,400), ylim=c(0,6000), main="nifc Natural")

hist(nifc$startdaynum[nifc$CAUSE==2], breaks=seq(-0.5,366.5,by=1), freq=-TRUE,
  xlim=c(0,400), ylim=c(0,6000), main="nifc Human")

Histograms of the start day over all months

hist(nifc$startday, breaks=seq(-0.5,31.5,by=1), freq=-TRUE, ylim=c(0,60000))

hist(nifc$startday[nifc$CAUSE==1], breaks=seq(-0.5,31.5,by=1), freq=-TRUE, ylim=c(0,30000),
  main="nifc Natural")

hist(nifc$startday[nifc$CAUSE==2], breaks=seq(-0.5,31.5,by=1), freq=-TRUE, ylim=c(0,30000),
  main="nifc Human")

Early vs late

length(nifc$startday)
## [1] 405124
nifc$startday2 <- ifelse(nifc$startday <= 9,  nifc$startday2 <- "1-9",
  nifc$startday2 <- "10-31")
length(nifc$startday2)
## [1] 405124
table(nifc$startday2)
## 
##    1-9  10-31 
## 121041 283895
nifc.table <- table(nifc$YEAR, nifc$startday2)
nifc.year <- as.integer(row.names(nifc.table))
nifc.ratio <- nifc.table[,1]/nifc.table[,2]
mosaicplot(nifc.table, color=c(3,4), cex.axis=0.6, las=3, main="Start Day in Month by Year")

plot(nifc.year, nifc.ratio, pch=16, type="o", lwd=3, col="red")

Mosaic plots

nifc.table.start <- table(nifc$startmon, nifc$startday2)
mosaicplot(nifc.table.start, color=c(3,4), cex.axis=0.6, las=3, main="Start Day in Month by Month")

nifc.tablemon <- table(nifc$YEAR, nifc$startmon)
mosaicplot(nifc.tablemon, color=monthcolors, cex.axis=0.6, las=3, main="All Fires")

nifc.tablemon.n <- table(nifc$YEAR[nifc$CAUSE==1], nifc$startmon[nifc$CAUSE==1])
mosaicplot(nifc.tablemon.n, color=monthcolors, cex.axis=0.6, las=3, main="Natural Fires")

nifc.tablemon.h <- table(nifc$YEAR[nifc$CAUSE==2], nifc$startmon[nifc$CAUSE==2])
mosaicplot(nifc.tablemon.h, color=monthcolors, cex.axis=0.6, las=3, main="Human Fires")

nifc.tablecause <- table(nifc$YEAR, nifc$AGENCY_COD)
mosaicplot(nifc.tablecause, cex.axis=0.6, las=3, color=mosaiccolor, main="Fires by Organization")

# 1 Natural; 2 Campfire; 3 Smoking; 4 Fire use; 5 Incendiary; 6 Equipment
# 7 Railroads; 8 Juveniles; 9 Miscellaneous; 0 Unknown
nifc.tablecause <- table(nifc$YEAR, nifc$GENERAL_CA)
mosaicplot(nifc.tablecause, cex.axis=0.6, las=3, color=mosaiccolor, main="Fires by Cause")

# 1 Lightning; 2 Aircraft; 3 Vehicle; 4 Exhaust; 5 Exhaust-other; 6 Logging Line; 7 Brakes; 8 Cooking/Warming;
# 9 Warming Fire; 10 Smoking; 11 Trash Burning; 12 Burning Dump; 13 Field Burning; 14 Land Clearing;
# 15 Slash Burning; 16 Right-of-way Burn; 17 Resource Management Burning; 18 Grudge Fire; 19 Recurrent;
# 20 Smoke Bees/Game; 21 Insect/Snake Control; 22 Employment; 23 Blasting; 24 Burning Building; 25 Power-line;
# 26 Fireworks; 27 Ignition Devices; 28 Repel Predators; 29 House/Stove Spark; 30 Other-Unknown;
# 31 Volcanic; 32 Other-Unknown
nifc.tablecause <- table(nifc$YEAR, nifc$specific_cause)
mosaicplot(nifc.tablecause, cex.axis=0.6, las=2, color=mosaiccolor, main="Fires by Cause")

# 1 Natural; 2 Campfire; 3 Smoking; 4 Fire use; 5 Incendiary; 6 Equipment
# 7 Railroads; 8 Juveniles; 9 Miscellaneous; 0 Unknown
nifc.tableagencycause <- table(nifc$AGENCY_COD, nifc$GENERAL_CA)
mosaicplot(nifc.tableagencycause, cex.axis=0.6, las=3, color=mosaiccolor, main="Fires by Agency and Cause")

# 1 Lightning; 2 Aircraft; 3 Vehicle; 4 Exhaust; 5 Exhaust-other; 6 Logging Line; 7 Brakes; 8 Cooking/Warming;
# 9 Warming Fire; 10 Smoking; 11 Trash Burning; 12 Burning Dump; 13 Field Burning; 14 Land Clearing;
# 15 Slash Burning; 16 Right-of-way Burn; 17 Resource Management Burning; 18 Grudge Fire; 19 Recurrent;
# 20 Smoke Bees/Game; 21 Insect/Snake Control; 22 Employment; 23 Blasting; 24 Burning Building; 25 Power-line;
# 26 Fireworks; 27 Ignition Devices; 28 Repel Predators; 29 House/Stove Spark; 30 Other-Unknown;
# 31 Volcanic; 32 Other-Unknown
nifc.tableagencyspcause <- table(nifc$AGENCY_COD, as.integer(nifc$specific_cause))
mosaicplot(nifc.tableagencyspcause, cex.axis=0.6, las=2, color=mosaiccolor, main="Fires by Agency and Cause")

Number of fires/year (FS and FWS)

hist(nifc$YEAR[nifc$AGENCY_COD =="USFS"], xlim=c(1980,2015), ylim=c(0,40000),
  breaks=seq(1979.5,2014.5,by=1))

hist(nifc$YEAR[nifc$AGENCY_COD =="FWS"], xlim=c(1980,2015), ylim=c(0,40000),
  breaks=seq(1979.5,2014.5,by=1))

Mosaic plots by agency (FS and FWS)

table(nifc$AGENCY_COD)
## 
##    BIA    BLM    FWS    NPS   USFS 
##  91480  88307      0  26809 198437
nifc.tablemon <- table(nifc$YEAR[nifc$AGENCY_COD == "USFS"],
  nifc$startmon[nifc$AGENCY_COD == "USFS"])
mosaicplot(nifc.tablemon, color=monthcolors, cex.axis=0.6, las=3, main="All Fires -- FS")

1.2 Western U.S. Subset

This subset corresponds to the data set used in Bartlein et al. (2008) (i.e. fires with longitudes <= -102.0)

nifc.wus <- nifc[nifc$LONGITUDE <= -102.0 & nifc$LONGITUDE >= -126.0,]
length(nifc.wus[,1])
## [1] 324843
table(nifc.wus$CAUSE)
## 
##      0      1      2 
##  20131 173145 131476

Map the data

plot(nifc.wus$LATITUDE ~ nifc.wus$LONGITUDE, ylim=c(27.5,50), xlim=c(-125,-100), type="n",
  xlab="Longitude", ylab="Latitude")
map("world", add=TRUE, lwd=2, col="gray")
map("state", add=TRUE, lwd=2, col="gray")
points(nifc.wus$LATITUDE ~ nifc.wus$LONGITUDE, pch=16, cex=0.2, col="red")

Histograms Western U.S.

hist(nifc.wus$startdaynum, breaks=seq(-0.5,366.5,by=1), freq=-TRUE, ylim=c(0,6000), xlim=c(0,400))

hist(nifc.wus$startdaynum[nifc.wus$CAUSE==1], breaks=seq(-0.5,366.5,by=1), freq=-TRUE,
  xlim=c(0,400), ylim=c(0,6000), main="nifc.wus Natural")

hist(nifc.wus$startdaynum[nifc.wus$CAUSE==2], breaks=seq(-0.5,366.5,by=1), freq=-TRUE,
  xlim=c(0,400), ylim=c(0,6000), main="nifc.wus Human")

1.3 Alaska Subset

Alaska data

nifcak <- nifc[nifc$LATITUDE >= 55.0 ,]
length(nifcak[,1])
## [1] 7014
table(nifcak$CAUSE)
## 
##    0    1    2 
##  895 4012 2016

Map the data

plot(nifcak$LATITUDE ~ nifcak$LONGITUDE, ylim=c(50,80), xlim=c(-180,-125), type="n",
  xlab="Longitude", ylab="Latitude")
map("world", add=TRUE, lwd=2, col="gray")
map("state", add=TRUE, lwd=2, col="gray")
points(nifcak$LATITUDE ~ nifcak$LONGITUDE, pch=16, cex=0.2, col="red")

Histograms Alaska U.S.

hist(nifcak$startdaynum, breaks=seq(-0.5,366.5,by=1), freq=-TRUE, ylim=c(0,400), xlim=c(0,400))

hist(nifcak$startdaynum[nifcak$CAUSE==1], breaks=seq(-0.5,366.5,by=1), freq=-TRUE,
  xlim=c(0,400), ylim=c(0,400), main="nifcak Natural")

hist(nifcak$startdaynum[nifcak$CAUSE==2], breaks=seq(-0.5,366.5,by=1), freq=-TRUE,
  xlim=c(0,400), ylim=c(0,400), main="nifcak Human")